21 resultados para PHARMACOGENOMICS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is becoming most clear that many genes are involved in controlling the regulation of growth. Ultimately however, at the level of growth hormone (GH), the relevant question may be not whether a patient is GH-deficient, but whether he is GH-responsive. As these disturbances can be divided into two gross categories, namely alterations causing subnormal GH secretion and/or those presenting with subnormal GH sensitivity/responsiveness, the main aim of this review is to focus on genes involved in growth regulation leading to short stature caused by an alteration of GH insensitivity/GH responsiveness; in other words, clinical circumstances where individually adapted GH replacement therapy may help to increase height velocity and eventually final height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley-Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399-401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic variations influencing response to pharmacotherapy of pain are currently under investigation. Drug-metabolizing enzymes represent a major target of ongoing research in order to identify associations between an individual's drug response and genetic profile. Polymorphisms of the cytochrome P450 enzymes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone and tricyclic antidepressants. Blood concentrations of some NSAIDs depend on CYP2C9 and/or CYP2C8 activity. Genomic variants of these genes associate well with NSAIDs' side effect profile. Other candidate genes, such as those encoding (opioid) receptors, transporters and other molecules important for pharmacotherapy in pain management, are discussed; however, study results are often equivocal. Besides genetic variants, further variables, for example, age, disease, comorbidity, concomitant medication, organ function as well as patients' compliance, may have an impact on pharmacotherapy and need to be addressed when pain therapists prescribe medication. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, well-designed studies are needed to demonstrate superiority to conventional dosing regimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of polymorphisms in the dihydropyrimidine dehydrogenase (DPD) gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU) based chemotherapy has been controversially debated. As a key enzyme in the catabolism of 5-FU, DPD is the top candidate for pharmacogenetic studies on 5-FU toxicity, since a reduced DPD activity is thought to result in an increased half-life of the drug, and thus, an increased risk of toxicity. Here, we review the current knowledge on well-known and frequently studied DPYD variants such as the c.1905+1G>A splice site variant, as well as the recent discoveries of important functional variation in the noncoding regions of DPYD. We also outline future directions that are needed to further improve the risk assessment of 5-FU toxicity, in particular with respect to metabolic profiling and in the context of different combination therapeutic regimens, in which 5-FU is used today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translating pharmacogenetics to clinical practice has been particularly challenging in the context of pain, due to the complexity of this multifaceted phenotype and the overall subjective nature of pain perception and response to analgesia. Overall, numerous genes involved with the pharmacokinetics and dynamics of opioids response are candidate genes in the context of opioid analgesia. The clinical relevance of CYP2D6 genotyping to predict analgesic outcomes is still relatively unknown; the two extremes in CYP2D6 genotype (ultrarapid and poor metabolism) seem to predict pain response and/or adverse effects. Overall, the level of evidence linking genetic variability (CYP2D6 and CYP3A4) to oxycodone response and phenotype (altered biotransformation of oxycodone into oxymorphone and overall clearance of oxycodone and oxymorphone) is strong; however, there has been no randomized clinical trial on the benefits of genetic testing prior to oxycodone therapy. On the other hand, predicting the analgesic response to morphine based on pharmacogenetic testing is more complex; though there was hope that simple genetic testing would allow tailoring morphine doses to provide optimal analgesia, this is unlikely to occur. A variety of polymorphisms clearly influence pain perception and behavior in response to pain. However, the response to analgesics also differs depending on the pain modality and the potential for repeated noxious stimuli, the opioid prescribed, and even its route of administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-Arrestin2 (ARRB2) is a component of the G-protein-coupled receptor complex and is involved in μ-opioid and dopamine D(2) receptor signaling, two central processes in methadone signal transduction. We analyzed 238 patients in methadone maintenance treatment (MMT) and identified a haplotype block (rs34230287, rs3786047, rs1045280 and rs2036657) spanning almost the entire ARRB2 locus. Although none of these single nucleotide polymorphisms (SNPs) leads to a change in amino-acid sequence, we found that for all the SNPs analyzed, with exception of rs34230287, homozygosity for the variant allele confers a nonresponding phenotype (n=73; rs1045280C and rs2036657G: OR=3.1, 95% CI=1.5-6.3, P=0.004; rs3786047A: OR=2.5, 95% CI=1.2-5.1, P=0.02) also illustrated by a 12-fold shorter period of negative urine screening (P=0.01). The ARRB2 genotype may thus contribute to the interindividual variability in the response to MMT and help to predict response to treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing discussion surrounding the issue of personalized approaches to drug prescription based on an individual's genetic makeup. This field of investigation has focused primarily on identifying genetic factors that influence drug metabolism and cellular disposition, thereby contributing to dose-dependent toxicities and/or variable drug efficacy. However, pharmacogenetic approaches have also proved valuable in predicting drug hypersensitivity reactions in selected patient populations, including HIV-infected patients receiving long-term antiretroviral therapy. In this instance, susceptibility has been strongly linked to genetic loci involved in antigen recognition and presentation to the immune system--most notably within the major histocompatibility complex (MHC) region--consistent with the notion that hypersensitivity reactions represent drug-specific immune responses that are largely dose independent. Here the authors describe their experiences with the development of pharmacogenetic approaches to hypersensitivity reactions associated with abacavir and nevirapine, two commonly prescribed antiretroviral drugs. It is demonstrated that prospective screening tests to identify and exclude individuals with a certain genetic makeup may be largely successful in decreasing or eliminating incidence of these adverse drug reactions in certain populations. This review also explores the broader implications of these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute infection with the hepatitis C virus (HCV) induces a wide range of innate and adaptive immune responses. A total of 20-50% of acutely HCV-infected individuals permanently control the virus, referred to as 'spontaneous hepatitis C clearance', while the infection progresses to chronic hepatitis C in the majority of cases. Numerous studies have examined host genetic determinants of hepatitis C infection outcome and revealed the influence of genetic polymorphisms of human leukocyte antigens, killer immunoglobulin-like receptors, chemokines, interleukins and interferon-stimulated genes on spontaneous hepatitis C clearance. However, most genetic associations were not confirmed in independent cohorts, revealed opposing results in diverse populations or were limited by varying definitions of hepatitis C outcomes or small sample size. Coordinated efforts are needed in the search for key genetic determinants of spontaneous hepatitis C clearance that include well-conducted candidate genetic and genome-wide association studies, direct sequencing and follow-up functional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n=372) and European (n=958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM Decreased DPD activity is a major cause of 5-fluorouracil (5-FU) toxicity, but known reduced-function variants in the DPD gene (DPYD) explain only a part of DPD-related 5-FU toxicities. Here, we evaluated the baseline (pretherapeutic) plasma 5,6-dihydrouracil:uracil (UH2:U) ratio as a marker of DPD activity in the context of DPYD genotypes. MATERIALS & METHODS DPYD variants were genotyped and plasma U, UH2 and 5-FU concentrations were determined by liquid chromatography-tandem mass spectrometry in 320 healthy blood donors and 28 cancer patients receiving 5-FU-based chemotherapy. RESULTS Baseline UH2:U ratios were strongly correlated with generally low and highly variable U concentrations. Reduced-function DPYD variants were only weakly associated with lower baseline UH2:U ratios. However, the interindividual variability in the UH2:U ratio was reduced and a stronger correlation between ratios and 5-FU exposure was observed in cancer patients during 5-FU administration. CONCLUSION These results suggest that the baseline UH2:U plasma ratio in most individuals reflects the nonsaturated state of DPD and is not predictive of decreased DPD activity. It may, however, be highly predictive at increased substrate concentrations, as observed during 5-FU administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. PATIENTS & METHODS The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. RESULTS & CONCLUSIONS Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1-1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39-4.62, and c.265-58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38-0.97) with 5-fluorouracil toxicity were replicated.